If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2-2y=16
We move all terms to the left:
3y^2-2y-(16)=0
a = 3; b = -2; c = -16;
Δ = b2-4ac
Δ = -22-4·3·(-16)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-14}{2*3}=\frac{-12}{6} =-2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+14}{2*3}=\frac{16}{6} =2+2/3 $
| 5x^2-0.75x+3.1=0 | | 14+1h=1h | | 7x+4x-9x=18x+26=0 | | 8a+30=180 | | 5x+18=2x+8 | | -15/f=-7 | | x^2+20x+72=-2 | | 5c+3=10c | | 2x-3)(x-1)=0 | | -20=4n+4-12n | | 24÷2+3x=2x+36 | | (X+5)+(2x+5)=85 | | 7x+4x-9x=18x+26 | | 2x+2/3(6x-12)=4x | | 4b+4=5b | | 0,25z-24=(16-0,75z)-15 | | 6x-3+6=0 | | 3x/4(x-7)=-9 | | a-12=4a | | 8z+12+3=8z+15 | | -643=r+-292 | | (b/2)-4=26 | | (x+2)^2-(x-2)(x+2)^2=0 | | (2/3)b=(-3/5) | | 170=6x+3 | | s=-1/10 | | 170=6x+8 | | 7x+30=(5x+6)*2 | | (35-3y)/2+y=180 | | (x+2)^2-(x-2)=0 | | n+-26=-15 | | 2x+3-8x=4 |